If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-24y-41=0
a = 3; b = -24; c = -41;
Δ = b2-4ac
Δ = -242-4·3·(-41)
Δ = 1068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1068}=\sqrt{4*267}=\sqrt{4}*\sqrt{267}=2\sqrt{267}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{267}}{2*3}=\frac{24-2\sqrt{267}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{267}}{2*3}=\frac{24+2\sqrt{267}}{6} $
| 7x+-12=79 | | 7y=5y=16 | | −10= �11−1311y−13 | | 27-6x=6(x-5) | | 15.2=7.9x-8.5 | | 2.85z-8.1475=-3.73 | | X+0.15x=28,500 | | 15.2=7.5x-8.5 | | X+0.10x=30,500 | | 9a-22=4a-67 | | X+0.10x=26,500 | | 2=e9 | | 4m+8.50=38.50 | | h+-6=9 | | j+2=19 | | 2=k+13 | | -22-x9=-19 | | 3u–4=–10 | | 4e-15=61 | | 2x-3=-{4x+9} | | f-6=2f+3(f-2 | | w+16=2 | | r-(-8)=18 | | n+-13=-11 | | 20x+10/2=15x | | u+3/8=5/8 | | d+15.19=18.19 | | d+15.9=18.19 | | 3+2=v≤7 | | p-2.1=6.9 | | 5r-6=r-2 | | x*0.58=1 |